Duplication and Adaptive Evolution of a Key Centromeric Protein in Mimulus, a Genus with Female Meiotic Drive.
نویسندگان
چکیده
The fundamental asymmetry of female meiosis creates an arena for genetic elements to compete for inclusion in the egg, promoting the selfish evolution of centromere variants that maximize their transmission to the future egg. Such "female meiotic drive" has been hypothesized to explain the paradoxically complex and rapidly evolving nature of centromeric DNA and proteins. Although theoretically widespread, few cases of active drive have been observed, thereby limiting the opportunities to directly assess the impact of centromeric drive on molecular variation at centromeres and binding proteins. Here, we characterize the molecular evolutionary patterns of CENH3, the centromere-defining histone variant, in Mimulus monkeyflowers, a genus with one of the few known cases of active centromere-associated female meiotic drive. First, we identify a novel duplication of CENH3 in diploid Mimulus, including in lineages with actively driving centromeres. Second, we demonstrate long-term adaptive evolution at several sites in the N-terminus of CENH3, a region with some meiosis-specific functions that putatively interacts with centromeric DNA. Finally, we infer that the paralogs evolve under different selective regimes; some sites in the N-terminus evolve under positive selection in the pro-orthologs or only one paralog (CENH3_B) and the paralogs exhibit significantly different patterns of polymorphism within populations. Our finding of long-term, adaptive evolution at CENH3 in the context of centromere-associated meiotic drive supports an antagonistic, coevolutionary battle for evolutionary dominance between centromeric DNA and binding proteins.
منابع مشابه
A novel meiotic drive locus almost completely distorts segregation in mimulus (monkeyflower) hybrids.
We report the discovery, mapping, and characterization of a meiotic drive locus (D) exhibiting nearly 100% nonrandom transmission in hybrids between two species of yellow monkeyflowers, outcrossing Mimulus guttatus and selfing M. nasutus. Only 1% of F(2) hybrids were M. nasutus homozygotes at the marker most tightly linked to D. We used a set of reciprocal backcrosses to distinguish among male-...
متن کاملTuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملCentromere-associated female meiotic drive entails male fitness costs in monkeyflowers.
Female meiotic drive, in which paired chromosomes compete for access to the egg, is a potentially powerful but rarely documented evolutionary force. In interspecific monkeyflower (Mimulus) hybrids, a driving M. guttatus allele (D) exhibits a 98:2 transmission advantage via female meiosis. We show that extreme interspecific drive is most likely caused by divergence in centromere-associated repea...
متن کاملDiversity of chromosome numbers and meiotic studies in genus Anchusa (Boraginaceae) from Iran (10 Nov 2015)
The present study reports the chromosome number and meiotic behaviour of 14 populationsbelonging to four taxa of Anchusa subgenus Buglossum Gusul. from Iran. All populationsshowed the chromosome number 2n= 4x= 32. It is the first meiotic study for A. subg.Buglossum. We discuss some habit form and evolutionary aspect in the light of cytogeneticdata. The origin of polyploidy (auto-allopolyploidy)...
متن کاملSpeciation by genome duplication: Repeated origins and genomic composition of the recently formed allopolyploid species Mimulus peregrinus
Whole genome duplication (polyploidization) is a mechanism of "instantaneous" species formation that has played a major role in the evolutionary history of plants. Much of what we know about the early evolution of polyploids is based upon studies of a handful of recently formed species. A new polyploid hybrid (allopolyploid) species Mimulus peregrinus, formed within the last 140 years, was rece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 32 10 شماره
صفحات -
تاریخ انتشار 2015